Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi Pharm J ; 32(5): 102041, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38558886

RESUMO

The rise of antibiotic resistance in bacteria is becoming a global concern, particularly due to the dwindling supply of new antibiotics. This situation mandates the discovery of new antimicrobial candidates. Plant-derived natural compounds have historically played a crucial role in the development of antibiotics, serving as a rich source of substances possessing antimicrobial properties. Numerous studies have supported the reputation of 6-gingerol, a prominent compound found in the ginger family, for its antibacterial properties. In this study, the antibacterial activities of 6-gingerol were evaluated against Gram-negative bacteria, Acinetobacter baumannii and Klebsiella pneumoniae, with a particular focus on the clinically significant Gram-negative Pseudomonas aeruginosa and Gram-positive bacteria Staphylococcus aureus. Furthermore, the anti-virulence activities were assessed in vitro, in vivo, and in silico. The current findings showed that 6-gingerol's antibacterial activity is due to its significant effect on the disruption of the bacterial cell membrane and efflux pumps, as it significantly decreased the efflux and disrupted the cell membrane of S. aureus and P. aeruginosa. Furthermore, 6-gingerol significantly decreased the biofilm formation and production of virulence factors in S. aureus and P. aeruginosa in concentrations below MICs. The anti-virulence properties of 6-gingerol could be attributed to its capacity to disrupt bacterial virulence-regulating systems; quorum sensing (QS). 6-Gingerol was found to interact with QS receptors and downregulate the genes responsible for QS. In addition, molecular docking, and molecular dynamics (MD) simulation results indicated that 6-gingerol showed a comparable binding affinity to the co-crystalized ligands of different P. aeruginosa QS targets as well as stable interactions during 100 ns MD simulations. These findings suggest that 6-gingerol holds promise as an anti-virulence agent that can be combined with antibiotics for the treatment of severe infections.

2.
Arch Microbiol ; 206(3): 124, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409503

RESUMO

Quorum sensing (QS) is a communication mechanism employed by many bacteria to regulate gene expression in a population density-dependent manner. It plays a crucial role in coordinating various bacterial behaviors, including biofilm formation, virulence factor production, and antibiotic resistance. However, the dysregulation of QS can lead to detrimental effects, making it an attractive target for developing novel therapeutic strategies. Anti-QS approaches aim to interfere with QS signaling pathways, inhibiting the communication between bacteria, and disrupting their coordinated activities. Various strategies have been explored to achieve this goal. Advances in understanding QS mechanisms and the discovery of new targets have paved the way for the development of innovative anti-QS approaches. Combining multiple anti-QS strategies or utilizing them in combination with traditional antibiotics holds great promise for combating bacterial infections and addressing the challenges posed by antibiotic resistance. Anti-QS approaches offer a diverse range of strategies including natural compounds, antibody-mediated quorum quenching (QQ), computer-aided drug design for QQ, repurposing of Drugs approved by FDA as anti-QS agents and modulating quorum-sensing molecules which were discussed in detail in this review. This review, comprehensively and for the first time, sheds light on the significance of diverse anti-QS strategies in solving antimicrobial resistance problem in Gram-negative microbial infection.


Assuntos
Infecções Bacterianas , Percepção de Quorum , Humanos , Bactérias/metabolismo , Infecções Bacterianas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/metabolismo , Bactérias Gram-Negativas , Controle de Infecções , Biofilmes
3.
Arch Microbiol ; 206(3): 101, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353831

RESUMO

A biofilm is a collection of microorganisms organized in a matrix of extracellular polymeric material. Biofilms consist of microbial cells that attach to both surfaces and each other, whether they are living or non-living. These microbial biofilms can lead to hospital-acquired infections and are generally detrimental. They possess the ability to resist the human immune system and antibiotics. The National Institute of Health (NIH) states that biofilm formation is associated with 65% of all microbial illnesses and 80% of chronic illnesses. Additionally, non-device-related microbial biofilm infections include conditions like cystic fibrosis, otitis media, infective endocarditis, and chronic inflammatory disorders. This review aims to provide an overview of research on chronic infections caused by microbial biofilms, methods used for biofilm detection, recent approaches to combat biofilms, and future perspectives, including the development of innovative antimicrobial strategies such as antimicrobial peptides, bacteriophages, and agents that disrupt biofilms.


Assuntos
Bacteriófagos , Infecção Hospitalar , Fibrose Cística , Humanos , Antibacterianos/farmacologia , Biofilmes
5.
Chem Biol Drug Des ; 103(1): e14379, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37873688

RESUMO

Designing kinase inhibitors that bind to the substrate site of oncogenic kinases in a promising, albeit less explored, approach to kinase inhibition as it was sought to avoid the issue of untoward off-target modulations. Our previously identified compound KAC-12 with a meta-chlorophenyl substitution was an example of this approach. While it showed confirmed inhibitory activity against cancer cells, this substitution shifted the profile of affected targets away from Src/tubulin which were seen with the parent KX-01. In this paper, we synthesized compounds with ortho-substitutions, and we investigated the effect of such substitutions on their cellular and subcellular activities. The compound N-(4-(2-(benzylamino)-2-oxoethyl)phenyl)-2-(morpholine-4-carbonyl)benzamide (4) exhibited substantial activities against cell lines such HCT116 (IC50 of 0.97 µM) and IC50 HL60 (2.84 µM). Kinase profiling showed that compound 4 trended consistently with KAC-12 as it did not affect Src, but it had more impact on members of the Src family of kinases (SFK) such as Yes, Hck, Fyn, Lck, and Lyn. Both compounds exhibited profound downregulation effects on Erk1/2 but differed on others such as GSK3α/ß and C-Jun. Collectively, this study further support to the hypothesis that small structural changes might bring higher changes in their kinome profile.


Assuntos
Benzamidas , Quinases da Família src , Quinases da Família src/metabolismo , Linhagem Celular , Benzamidas/farmacologia
6.
J Ethnopharmacol ; 323: 117611, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38158095

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bacterial resistance to antibiotics is a growing global concern, highlighting the urgent need for new antimicrobial candidates. Aframomum melegueta was traditionally used for combating urinary tract and soft tissue infections, which implies its potential as an antimicrobial agent. AIM OF STUDY: This study was designed to explore the antibacterial and anti-virulence capabilities of 4-shogaol isolated from A. melegueta seeds versus gram-negative bacteria: Serratia marcescens, Klebsiella pneumoniae, Acinetobacter baumannii, and the clinically important pathogen Pseudomonas aeruginosa. MATERIALS AND METHODS: 4-Shogeol was isolated from A. melegueta seeds and its MICs were determined for Acinetobacter baumannii (ATCC-17978), Pseudomonas aeruginosa (ATCC-27853), Klebsiella pneumoniae (ATCC-700603), and Serratia marcescens clinical isolate. The anti-efflux activity and effect on the bacterial cell membrane for the compound were evaluated. Furthermore, the anti-virulence activities of the compound were evaluated. The effects of 4-shogeol at sub-MIC on bacterial motility, biofilm formation, and production of virulent enzymes and pigments were assessed. The anti-quorum sensing activities of 4-shogeol were evaluated virtually and by quantification its effect on the expression of quorum sensing encoding genes. The in vivo protection assay was conducted to evaluate the effect of 4-shogaol on the P. aeruginosa capacity to induce pathogenesis in mice. Finally, the effect of shogaol-antibiotics combination was assessed. RESULTS: The research revealed that 4-shogaol's antibacterial action primarily involves disrupting the bacterial cell membrane and efflux pumps. It also exhibited significant anti-virulence effects by reducing biofilm development and repressing virulence factors production, effectively protecting mice against P. aeruginosa infection. Furthermore, when combined with antibiotics, 4-shogaol demonstrated synergistic effects, leading to reduced minimum inhibitory concentrations (MICs) against P. aeruginosa. Its anti-virulence properties were linked to its ability to disrupt bacterial quorum sensing (QS) mechanisms, as evidenced by its interaction with QS receptors and downregulation of QS-related genes. Notably, in silico analysis indicated that 4-shogaol exhibited strong binding affinity to different P. aeruginosa QS targets. CONCLUSION: These findings suggest that 4-shogaol holds promise as an effective anti-virulence agent that can be utilized in combination with antibiotics for treating severe infections caused by gram-positive bacteria.


Assuntos
Anti-Infecciosos , Biofilmes , Catecóis , Camundongos , Animais , Anti-Infecciosos/farmacologia , Percepção de Quorum , Antibacterianos/farmacologia , Antibacterianos/química , Fatores de Virulência/metabolismo , Bactérias Gram-Negativas , Bactérias , Pseudomonas aeruginosa
7.
Metabolites ; 13(8)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37623885

RESUMO

Hyperglycemia, as a hallmark of the metabolic malady diabetes mellitus, has been an overwhelming healthcare burden owing to its high rates of comorbidity and mortality, as well as prospective complications affecting different body organs. Available therapeutic agents, with α-glucosidase inhibitors as one of their cornerstone arsenal, control stages of broad glycemia while showing definitive characteristics related to their low clinical efficiency and off-target complications. This has propelled the academia and industrial section into discovering novel and safer candidates. Herein, we provided a thorough computational exploration of identifying candidates from the marine-derived Aspergillus terreus isolates. Combined structural- and ligand-based approaches using a chemical library of 275 metabolites were adopted for pinpointing promising α-glucosidase inhibitors, as well as providing guiding insights for further lead optimization and development. Structure-based virtual screening through escalating precision molecular docking protocol at the α-glucosidase canonical pocket identified 11 promising top-docked hits, with several being superior to the market drug reference, acarbose. Comprehensive ligand-based investigations of these hits' pharmacokinetics ADME profiles, physiochemical characterizations, and obedience to the gold standard Lipinski's rule of five, as well as toxicity and mutagenicity profiling, proceeded. Under explicit conditions, a molecular dynamics simulation identified the top-stable metabolites: butyrolactone VI (SK-44), aspulvinone E (SK-55), butyrolactone I 4''''-sulfate (SK-72), and terrelumamide B (SK-173). They depicted the highest free binding energies and steadiest thermodynamic behavior. Moreover, great structural insights have been revealed, including the advent of an aromatic scaffold-based interaction for ligand-target complex stability. The significance of introducing balanced hydrophobic/polar moieties, like triazole and other bioisosteres of carboxylic acid, has been highlighted across docking, ADME/Tox profiling, and molecular dynamics studies for maximizing binding interactions while assuring safety and optimal pharmacokinetics for targeting the intestinal-localized α-glucosidase enzyme. Overall, this study provided valuable starting points for developing new α-glucosidase inhibitors based on nature-derived unique scaffolds, as well as guidance for prospective lead optimization and development within future pre-clinical and clinical investigations.

8.
Appl Microbiol Biotechnol ; 107(11): 3763-3778, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37079062

RESUMO

The resistance development is an increasing global health risk that needs innovative solutions. Repurposing drugs to serve as anti-virulence agents is suggested as an advantageous strategy to diminish bacterial resistance development. Bacterial virulence is controlled by quorum sensing (QS) system that orchestrates the expression of biofilm formation, motility, and virulence factors production as enzymes and virulent pigments. Interfering with QS could lead to bacterial virulence mitigation without affecting bacterial growth that does not result in bacterial resistance development. This study investigated the probable anti-virulence and anti-QS activities of α-adrenoreceptor blocker doxazosin against Proteus mirabilis and Pseudomonas aeruginosa. Besides in silico study, in vitro and in vivo investigations were conducted to assess the doxazosin anti-virulence actions. Doxazosin significantly diminished the biofilm formation and release of QS-controlled Chromobacterium violaceum pigment and virulence factors in P. aeruginosa and P. mirabilis, and downregulated the QS encoding genes in P. aeruginosa. Virtually, doxazosin interfered with QS proteins, and in vivo protected mice against P. mirabilis and P. aeruginosa. The role of the membranal sensors as QseC and PmrA was recognized in enhancing the Gram-negative virulence. Doxazosin downregulated the membranal sensors PmR and QseC encoding genes and could in silico interfere with them. In conclusion, this study preliminary documents the probable anti-QS and anti-virulence activities of doxazosin, which indicate its possible application as an alternative or in addition to antibiotics. However, extended toxicological and pharmacological investigations are essential to approve the feasible clinical application of doxazosin as novel efficient anti-virulence agent. KEY POINTS: • Anti-hypertensive doxazosin acquires anti-quorum sensing activities • Doxazosin diminishes the virulence of Proteus mirabilis and Pseudomonas aeruginosa • Doxazosin could dimmish the bacterial espionage.


Assuntos
Biofilmes , Fatores de Virulência , Camundongos , Animais , Fatores de Virulência/metabolismo , Doxazossina/farmacologia , Reposicionamento de Medicamentos , Percepção de Quorum , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Pseudomonas aeruginosa/metabolismo
9.
Antibiotics (Basel) ; 11(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36358239

RESUMO

Salmonella enterica is a Gram-negative orofecal transmitted pathogen that causes a wide diversity of local and systemic illnesses. Salmonella enterica utilizes several interplayed systems to regulate its invasion and pathogenesis: namely, quorum sensing (QS) and type three secretion system (T3SS). In addition, S. enterica could sense the adrenergic hormones in the surroundings that enhance its virulence. The current study aimed to evaluate the ability of α-adrenoreceptor antagonist prazosin to mitigate the virulence of S. enterica serovar Typhimurium. The prazosin effect on biofilm formation and the expression of sdiA, qseC, qseE, and T3SS-type II encoding genes was evaluated. Furthermore, the prazosin intracellular replication inside macrophage and anti-virulence activity was evaluated in vivo against S. typhimurium. The current finding showed a marked prazosin ability to compete on SdiA and QseC and downregulate their encoding genes. Prazosin significantly downregulated the virulence factors encoding genes and diminished the biofilm formation, intracellular replication inside macrophages, and in vivo protected mice. To sum up, prazosin showed significant inhibitory activities against QS, T3SS, and bacterial espionage, which documents its considered anti-virulence activities.

10.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361877

RESUMO

The development of bacterial resistance to antibiotics is an increasing public health issue that worsens with the formation of biofilms. Quorum sensing (QS) orchestrates the bacterial virulence and controls the formation of biofilm. Targeting bacterial virulence is promising approach to overcome the resistance increment to antibiotics. In a previous detailed in silico study, the anti-QS activities of twenty-two ß-adrenoreceptor blockers were screened supposing atenolol as a promising candidate. The current study aims to evaluate the anti-QS, anti-biofilm and anti-virulence activities of the ß-adrenoreceptor blocker atenolol against Gram-negative bacteria Serratia marcescens, Pseudomonas aeruginosa, and Proteus mirabilis. An in silico study was conducted to evaluate the binding affinity of atenolol to S. marcescens SmaR QS receptor, P. aeruginosa QscR QS receptor, and P. mirabilis MrpH adhesin. The atenolol anti-virulence activity was evaluated against the tested strains in vitro and in vivo. The present finding shows considerable ability of atenolol to compete with QS proteins and significantly downregulated the expression of QS- and virulence-encoding genes. Atenolol showed significant reduction in the tested bacterial biofilm formation, virulence enzyme production, and motility. Furthermore, atenolol significantly diminished the bacterial capacity for killing and protected mice. In conclusion, atenolol has potential anti-QS and anti-virulence activities against S. marcescens, P. aeruginosa, and P. mirabilis and can be used as an adjuvant in treatment of aggressive bacterial infections.


Assuntos
Atenolol , Fatores de Virulência , Camundongos , Animais , Atenolol/farmacologia , Atenolol/metabolismo , Fatores de Virulência/genética , Percepção de Quorum , Biofilmes , Bactérias Gram-Negativas , Pseudomonas aeruginosa , Serratia marcescens/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteus mirabilis/metabolismo , Proteínas de Bactérias/metabolismo
11.
Microorganisms ; 10(10)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36296252

RESUMO

The targeting of bacterial virulence is proposed as a promising approach to overcoming the bacterial resistance development to antibiotics. Salmonella enterica is one of the most important gut pathogens that cause a wide diversity of local and systemic illnesses. The Salmonella virulence is controlled by interplayed systems namely Quorum sensing (QS) and type three secretion system (T3SS). Furthermore, the Salmonella spy on the host cell via sensing the adrenergic hormones enhancing its virulence. The current study explores the possible anti-virulence activities of ß-adrenoreceptor blocker atenolol against S. enterica serovar Typhimurium in vitro, in silico, and in vivo. The present findings revealed a significant atenolol ability to diminish the S. typhimurium biofilm formation, invasion into HeLa cells, and intracellular replication inside macrophages. Atenolol significantly downregulated the encoding genes of the T3SS-type II, QS receptor Lux analogs sdiA, and norepinephrine membranal sensors qseC and qseE. Moreover, atenolol significantly protected mice against S. typhimurium. For testing the possible mechanisms for atenolol anti-virulence activities, an in silico molecular docking study was conducted to assess the atenolol binding ability to QS receptor SdiA and norepinephrine membranal sensors QseC. Atenolol showed the ability to compete on the S. typhimurium targets. In conclusion, atenolol is a promising anti-virulence candidate to alleviate the S. typhimurium pathogenesis by targeting its QS and T3SS systems besides diminishing the eavesdropping on the host cells.

12.
Molecules ; 27(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296388

RESUMO

Phenaloenones are structurally unique aromatic polyketides that have been reported in both microbial and plant sources. They possess a hydroxy perinaphthenone three-fused-ring system and exhibit diverse bioactivities, such as cytotoxic, antimicrobial, antioxidant, and anti-HIV properties, and tyrosinase, α-glucosidase, lipase, AchE (acetylcholinesterase), indoleamine 2,3-dioxygenase 1, angiotensin-I-converting enzyme, and tyrosine phosphatase inhibition. Moreover, they have a rich nucleophilic nucleus that has inspired many chemists and biologists to synthesize more of these related derivatives. The current review provides an overview of the reported phenalenones with a fungal origin, including their structures, sources, biosynthesis, and bioactivities. Moreover, more than 135 metabolites have been listed, and 71 references have been cited. SuperPred, an artificial intelligence (AI) webserver, was used to predict the potential targets for selected phenalenones. Among these targets, we chose human glucose transporter 1 (hGLUT1) for an extensive in silico study, as it shows high probability and model accuracy. Among them, aspergillussanones C (60) and G (60) possessed the highest negative docking scores of -15.082 and -14.829 kcal/mol, respectively, compared to the native inhibitor of 5RE (score: -11.206 kcal/mol). The MD (molecular dynamics) simulation revealed their stability in complexes with GLUT1 at 100 ns. The virtual screening study results open up a new therapeutic approach by using some phenalenones as hGLUT1 inhibitors, which might be a potential target for cancer therapy.


Assuntos
Acetilcolinesterase , Policetídeos , Humanos , alfa-Glucosidases , Transportador de Glucose Tipo 1 , Monofenol Mono-Oxigenase , Antioxidantes , Inteligência Artificial , Indolamina-Pirrol 2,3,-Dioxigenase , Simulação de Dinâmica Molecular , Policetídeos/química , Lipase , Angiotensinas , Monoéster Fosfórico Hidrolases , Tirosina , Simulação de Acoplamento Molecular
13.
Front Genet ; 13: 872845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051694

RESUMO

The NRAS gene is a well-known oncogene that acts as a major player in carcinogenesis. Mutations in the NRAS gene have been linked to multiple types of human tumors. Therefore, the identification of the most deleterious single nucleotide polymorphisms (SNPs) in the NRAS gene is necessary to understand the key factors of tumor pathogenesis and therapy. We aimed to retrieve NRAS missense SNPs and analyze them comprehensively using sequence and structure approaches to determine the most deleterious SNPs that could increase the risk of carcinogenesis. We also adopted structural biology methods and docking tools to investigate the behavior of the filtered SNPs. After retrieving missense SNPs and analyzing them using six in silico tools, 17 mutations were found to be the most deleterious mutations in NRAS. All SNPs except S145L were found to decrease NRAS stability, and all SNPs were found on highly conserved residues and important functional domains, except R164C. In addition, all mutations except G60E and S145L showed a higher binding affinity to GTP, implicating an increase in malignancy tendency. As a consequence, all other 14 mutations were expected to increase the risk of carcinogenesis, with 5 mutations (G13R, G13C, G13V, P34R, and V152F) expected to have the highest risk. Thermodynamic stability was ensured for these SNP models through molecular dynamics simulation based on trajectory analysis. Free binding affinity toward the natural substrate, GTP, was higher for these models as compared to the native NRAS protein. The Gly13 SNP proteins depict a differential conformational state that could favor nucleotide exchange and catalytic potentiality. A further application of experimental methods with all these 14 mutations could reveal new insights into the pathogenesis and management of different types of tumors.

14.
Biology (Basel) ; 11(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36138828

RESUMO

Quorum sensing (QS) controls the production of several bacterial virulence factors. There is accumulative evidence to support that targeting QS can ensure a significant diminishing of bacterial virulence. Lessening bacterial virulence has been approved as an efficient strategy to overcome the development of antimicrobial resistance. The current study aimed to assess the anti-QS and anti-virulence activities of α-adrenoreceptor prazosin against three virulent Gram-negative bacteria Pseudomonades aeruginosa, Proteus mirabilis, and Serratia marcescens. The evaluation of anti-QS was carried out on a series of in vitro experiments, while the anti-virulence activities of prazosin were tested in an in vivo animal model. The prazosin anti-QS activity was assessed on the production of QS-controlled Chromobacterium violaceum pigment violacein and the expression of QS-encoding genes in P. aeruginosa. In vitro tests were performed to evaluate the prazosin effects on biofilm formation and production of extracellular enzymes by P. aeruginosa, P. mirabilis, and S. marcescens. A protective assay was conducted to evaluate the in vivo anti-virulence activity of prazosin against P. aeruginosa, P. mirabilis, and S. marcescens. Moreover, precise in silico molecular docking was performed to test the prazosin affinity to different QS receptors. The results revealed that prazosin significantly decreased the production of violacein and the virulent enzymes, protease and hemolysins, in the tested strains. Prazosin significantly diminished biofilm formation in vitro and bacterial virulence in vivo. The prazosin anti-QS activity was proven by its downregulation of QS-encoding genes and its obvious binding affinity to QS receptors. In conclusion, prazosin could be considered an efficient anti-virulence agent to be used as an adjuvant to antibiotics, however, it requires further pharmacological evaluations prior to clinical application.

15.
Curr Issues Mol Biol ; 44(7): 2923-2938, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35877426

RESUMO

Silver nanoparticles have been used for numerous therapeutic purposes because of their increased biodegradability and bioavailability, yet their toxicity remains questionable as they are known to interact easily with biological systems because of their small size. This study aimed to investigate and compare the effect of silver nanoparticles' particle size in terms of their potential hazard, as well as their potential protective effect in an LPS-induced hepatotoxicity model. Liver slices were obtained from Sprague Dawley adult male rats, and the thickness of the slices was optimized to 150 µm. Under regulated physiological circumstances, freshly cut liver slices were divided into six different groups; GP1: normal, GP2: LPS (control), GP3: LPS + AgNpL (positive control), GP4: LPS + silymarin (standard treatment), GP5: LPS + AgNpS + silymarin (treatment I), GP6: LPS + AgNpL + silymarin (treatment II). After 24 h of incubation, the plates were gently removed, and the supernatant and tissue homogenate were all collected and then subjected to the following biochemical parameters: Cox2, NO, IL-6, and TNF-α. The LPS elicited marked hepatic tissue injury manifested by elevated cytokines and proinflammatory markers. Both small silver nanoparticles and large silver nanoparticles efficiently attenuated LPS hepatotoxicity, mainly via preserving the cytokines' level and diminishing the inflammatory pathways. In conclusion, large silver nanoparticles exhibited effective hepatoprotective capabilities over small silver nanoparticles.

16.
Plants (Basel) ; 11(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35893619

RESUMO

Since the emergence of the pandemic of the coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the discovery of antiviral phytoconstituents from medicinal plants against SARS-CoV-2 has been comprehensively researched. In this study, thirty-three plants belonging to seventeen different families used traditionally in Saudi Arabia were tested in vitro for their ability to inhibit the SARS-CoV-2 main protease (MPRO). Major constituents of the bio-active extracts were isolated and tested for their inhibition potential against this enzyme; in addition, their antiviral activity against the SARS-CoV-2 Egyptian strain was assessed. Further, the thermodynamic stability of the best active compounds was studied through focused comparative insights for the active metabolites regarding ligand-target binding characteristics at the molecular level. Additionally, the obtained computational findings provided useful directions for future drug optimization and development. The results revealed that Psiadia punctulata, Aframomum melegueta, and Nigella sativa extracts showed a high percentage of inhibition of 66.4, 58.7, and 31.5%, against SARS-CoV-2 MPRO, respectively. The major isolated constituents of these plants were identified as gardenins A and B (from P. punctulata), 6-gingerol and 6-paradol (from A. melegueta), and thymoquinone (from N. sativa). These compounds are the first to be tested invitro against SARS-CoV-2 MPRO. Among the isolated compounds, only thymoquinone (THY), gardenin A (GDA), 6-gingerol (GNG), and 6-paradol (PAD) inhibited the SARS-CoV-2 MPRO enzyme with inhibition percentages of 63.21, 73.80, 65.2, and 71.8%, respectively. In vitro assessment of SARS-CoV-2 (hCoV-19/Egypt/NRC-03/2020 (accession number on GSAID: EPI_ISL_430820) revealed a strong-to-low antiviral activity of the isolated compounds. THY showed relatively high cytotoxicity and was anti-SARS-CoV-2, while PAD demonstrated a cytotoxic effect on the tested VERO cells with a selectivity index of CC50/IC50 = 1.33 and CC50/IC50 = 0.6, respectively. Moreover, GNG had moderate activity at non-cytotoxic concentrations in vitro with a selectivity index of CC50/IC50 = 101.3/43.45 = 2.3. Meanwhile, GDA showed weak activity with a selectivity index of CC50/IC50 = 246.5/83.77 = 2.9. The thermodynamic stability of top-active compounds revealed preferential stability and SARS-CoV-2 MPRO binding affinity for PAD through molecular-docking-coupled molecular dynamics simulation. The obtained results suggest the treating potential of these plants and/or their active metabolites for COVID-19. However, further in-vivo and clinical investigations are required to establish the potential preventive and treatment effectiveness of these plants and/or their bio-active compounds in COVID-19.

17.
Antioxidants (Basel) ; 11(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35624682

RESUMO

Sonchus cornutus (Asteraceae) is a wild. edible plant that represents a plentiful source of polyphenolic compounds. For the first time, the metabolic analysis profiling demonstrated the presence of anthocyanidin glycosides, coumarins, flavonoids and their corresponding glycosides, and phenolic acids. The total phenolic compounds were determined to be 206.28 ± 14.64 mg gallic acid equivalent/gm, while flavonoids were determined to be 45.56 ± 1.78 mg quercetin equivalent/gm. The crude extract of S. cornutus exhibited a significant 1,1-diphenyl-2-picrylhydrazyl free radical scavenging effect with half-maximal inhibitory concentration (IC50) of 16.10 ± 2.14 µg/mL compared to ascorbic acid as a standard (10.64 ± 0.82 µg/mL). In vitro total antioxidant capacity and ferric reducing power capacity assays revealed a promising reducing potential of S. cornutus extract. Therefore, the possible protective effects of S. cornutus against hepatic and renal toxicity induced by cisplatin in experimental mice were investigated. S. cornutus significantly ameliorated the cisplatin-induced disturbances in liver and kidney functions and oxidative stress, decreased MDA, ROS, and NO levels, and restored CAT and SOD activities. Besides, it reversed cisplatin-driven upregulation in inflammatory markers, including iNOS, IL-6, and IL-1ß levels and NF-κB and TNF-α expression, and elevated anti-inflammatory IL-10 levels and Nrf2 expression. Additionally, the extract mitigated cisplatin alteration in apoptotic (Bax and caspase-3) and anti-apoptotic (Bcl-2) proteins. Interestingly, hepatic, and renal histopathology revealed the protective impacts of S. cornutus against cisplatin-induced pathological changes. Our findings guarantee a protective effect of S. cornutus against cisplatin-induced hepatic and renal damage via modulating oxidative stress, inflammation, and apoptotic pathways.

18.
Biomedicines ; 10(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35625905

RESUMO

The Red Sea marine fungus Penicillium chrysogenum (Family: Ascomycota) comprises a panel of chemically diverse natural metabolites. A meleagrin alkaloid was isolated from deep-sediment-derived P. chrysogenum Strain S003 and has been reported to exert antibacterial and cytotoxic activities. The present study aimed to explore the therapeutic potential of meleagrin on pulmonary fibrosis. Lung fibrosis was induced in mice by a single intratracheal instillation of 2.5 mg/kg bleomycin. Mice were given 5 mg/kg meleagrin daily either for 3 weeks after bleomycin administration in the treatment group or 2 weeks before and 3 weeks after bleomycin administration in the protection group. Bleomycin triggered excessive ROS production, inflammatory infiltration, collagen overproduction and fibrosis. Bleomycin-induced pulmonary fibrosis was attenuated by meleagrin. Meleagrin was noted to restore the oxidant-antioxidant balance, as evidenced by lower MDA contents and higher levels of SOD and catalase activities and GSH content compared to the bleomycin group. Meleagrin also activated the Nrf2/HO-1 antioxidant signaling pathway and inhibited TLR4 and NF-κB gene expression, with a subsequent decreased release of pro-inflammatory cytokines (TNF-α, IL-6 and IFN-γ). Additionally, meleagrin inhibited bleomycin-induced apoptosis by abating the activities of pro-apoptotic proteins Bax and caspase-3 while elevating Bcl2. Furthermore, it suppressed the gene expression of α-SMA, TGF-ß1, Smad-2, type I collagen and MMP-9, with a concomitant decrease in the protein levels of TGF-ß1, α-SMA, phosphorylated Smad-2, MMP-9, elastin and fibronectin. This study revealed that meleagrin's protective effects against bleomycin-induced pulmonary fibrosis are attributed to its antioxidant, anti-inflammatory, anti-apoptotic and antifibrotic properties. Notably, the use of meleagrin as a protective agent against bleomycin-induced lung fibrosis was more efficient than its use as a treatment agent.

19.
J Fungi (Basel) ; 8(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628759

RESUMO

Fungi are renowned as a fountainhead of bio-metabolites that could be employed for producing novel therapeutic agents, as well as enzymes with wide biotechnological and industrial applications. Stachybotrys chartarum (black mold) (Stachybotriaceae) is a toxigenic fungus that is commonly found in damp environments. This fungus has the capacity to produce various classes of bio-metabolites with unrivaled structural features, including cyclosporins, cochlioquinones, atranones, trichothecenes, dolabellanes, phenylspirodrimanes, xanthones, and isoindoline and chromene derivatives. Moreover, it is a source of various enzymes that could have variable biotechnological and industrial relevance. The current review highlights the formerly published data on S. chartarum, including its metabolites and their bioactivities, as well as industrial and biotechnological relevance dated from 1973 to the beginning of 2022. In this work, 215 metabolites have been listed and 138 references have been cited.

20.
Microb Pathog ; 166: 105543, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35460864

RESUMO

Microorganisms rely on the benefit of using chemical signals called autoinducers (AIs) as a connection matter in term of population, this mechanism is known as quorum sensing (QS). Quorum sensing is responsible for formation of biofilm together with virulence in bacteria. The most known QS molecule is N-acyl homoserine lactones (AHLs). A lot of degrading enzymes including lactonases that open the AHL ring and acylases that breakdown its acyl side chain can degrade or inactivate AHL. Due to similarity in lactone ring structure among AHLs it is susceptible to most of lactonases. Bacillus species are among the most promising bacteria producing AHL-lactonase. The aim of the work is to identify and study the diversity of the AHL-Lactonase gene among different Bacillus subtilis as a promising Quorum Quenching (QQ) strategy to prevent bacterial infections and biofilm formation. The AHL-lactonase (aiiA) gene of 64 B. subtilis isolates was amplified and sequenced followed by multiple sequence alignment of the translated amino acid sequences, homology modeling and docking study. An expected PCR product of about 750 base pair was detected in 22 B. subtilis isolates, and the results revealed that the isolates' sequences showed identity ranged between 97.61% and 99.47% with those in the NCBI GenBank database with 100% query coverage and 0.0 E-value. In addition, the results revealed high level of identity between many aiiA gene sequences of our isolates as they were closely related to the same sequences to many sequences of the NCBI GenBank database. The alignment of the amino acid sequences from the 22 B. subtilis isolates indicated that 84.4% of the amino acid residues were conserved between the aligned sequences. Docking of the co-crystalized ligand to wildtype and H109Y mutated protein showed a significant reduction of docking score for the mutated protein. This result indicate that this mutation might affect recognition or at least kinetics of these enzymes and hence their roles in quorum-quenching.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Hidrolases de Éster Carboxílico , Acil-Butirolactonas , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Variação Genética , Percepção de Quorum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...